Deployment
MIND provides production-ready deployment options for cloud, edge, and on-premise environments with built-in serving infrastructure, auto-scaling, and monitoring.
Early Access: Deployment features are currently in Phase 15 development. The APIs described here are subject to change. See the Roadmap for current status.
Deployment Options
MIND supports multiple deployment targets:
| Target | Use Case | Features |
|---|---|---|
| Container | Kubernetes, Docker | Auto-scaling, health checks, rolling updates |
| Serverless | AWS Lambda, Cloud Run | Pay-per-request, automatic scaling |
| Edge | IoT, mobile, embedded | Optimized binary, low latency |
| Bare Metal | On-premise, HPC | Maximum performance, custom hardware |
Quick Start
Deploy a trained model with a single command:
# Build optimized inference binary mind build --release model.mind -o model.bin # Deploy to local serving endpoint mind serve model.bin --port 8080 # Or deploy to cloud mind deploy model.bin --target aws --region us-east-1
Container Deployment
Generate production-ready Docker images with the MIND CLI:
# Generate Dockerfile and build image
mind container build --image my-model:v1.0 model.mind
# Push to registry
docker push my-model:v1.0
# Deploy to Kubernetes
mind deploy model.mind \
--target kubernetes \
--replicas 3 \
--cpu 2 \
--memory 4Gi \
--gpu 1Kubernetes Manifest
MIND generates Kubernetes manifests with best practices:
# Generated by: mind deploy --target kubernetes
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-model
spec:
replicas: 3
selector:
matchLabels:
app: my-model
template:
spec:
containers:
- name: inference
image: my-model:v1.0
ports:
- containerPort: 8080
resources:
requests:
cpu: "2"
memory: "4Gi"
nvidia.com/gpu: "1"
readinessProbe:
httpGet:
path: /health
port: 8080
livenessProbe:
httpGet:
path: /health
port: 8080Model Serving
MIND's built-in serving infrastructure provides REST and gRPC endpoints:
use mind::serve::{Server, Endpoint};
// Define inference endpoint
@endpoint("/predict")
fn predict(input: Tensor<f32, [1, 784]>) -> Tensor<f32, [1, 10]> {
model.forward(input)
}
// Start server with auto-batching
fn main() {
Server::new()
.model(model)
.batch_size(32)
.batch_timeout_ms(10)
.port(8080)
.serve();
}API Endpoints
The serving runtime exposes these endpoints:
| Endpoint | Method | Description |
|---|---|---|
| /predict | POST | Run inference on input data |
| /health | GET | Health check for load balancers |
| /metrics | GET | Prometheus metrics |
| /info | GET | Model metadata and version |
Edge Deployment
Deploy optimized models to edge devices with minimal runtime:
# Build for ARM64 edge device
mind build --target aarch64-unknown-linux-gnu \
--optimize size \
--quantize int8 \
model.mind -o model-edge.bin
# Build for WebAssembly (browser)
mind build --target wasm32 \
--optimize size \
model.mind -o model.wasmOptimization Options
- Quantization: INT8/INT4 inference for reduced memory and faster execution
- Pruning: Remove redundant weights for smaller models
- Fusion: Combine operators for fewer kernel launches
- Static shapes: Compile with fixed input shapes for optimized code paths
A/B Testing & Canary Deployments
MIND supports gradual rollouts and traffic splitting:
# Deploy new version with 10% traffic
mind deploy model-v2.mind \
--canary \
--traffic-percent 10 \
--monitor latency,accuracy
# Promote to 100% after validation
mind deploy promote model-v2
# Rollback if issues detected
mind deploy rollbackMonitoring & Observability
Built-in monitoring with OpenTelemetry integration:
use mind::serve::{Server, Metrics};
Server::new()
.model(model)
.metrics(Metrics::new()
.histogram("latency_ms")
.counter("requests_total")
.gauge("batch_size")
.enable_tracing())
.otlp_endpoint("http://collector:4317")
.serve();Available Metrics
- Inference latency: p50, p95, p99 latency histograms
- Throughput: Requests per second, batch utilization
- Resource usage: GPU memory, CPU utilization
- Model drift: Input/output distribution changes
- Error rates: Failed predictions, timeouts
Model Versioning
Track and manage model versions with built-in versioning:
# Tag a model version mind model tag model.mind v1.2.0 --message "Improved accuracy" # List versions mind model versions # Deploy specific version mind deploy model@v1.2.0 # Compare versions mind model diff v1.1.0 v1.2.0
Best Practices
- Always use versioned model artifacts in production
- Enable health checks and readiness probes for container deployments
- Use auto-batching to maximize throughput under load
- Set resource limits to prevent OOM issues
- Monitor model drift and retrain when accuracy degrades
- Use canary deployments for risky changes
Learn More
See Distributed Execution for multi-node deployment and the Roadmap for upcoming deployment features.