MLIR Lowering
MIND uses MLIR (Multi-Level Intermediate Representation) as its backend infrastructure, enabling powerful optimizations and multi-target code generation.
Lowering Pipeline
MIND IR
↓
mind dialect (high-level tensor ops)
↓
linalg dialect (loop-based tensor ops)
↓
scf dialect (structured control flow)
↓
arith + memref dialects
↓
llvm dialect
↓
LLVM IR → Machine CodeMIND Dialect
The custom MIND dialect represents high-level tensor operations:
// MIND dialect example
%result = mind.matmul %a, %b : tensor<2x3xf32>, tensor<3x4xf32> -> tensor<2x4xf32>
%activated = mind.relu %result : tensor<2x4xf32>
%reduced = mind.sum %activated {axis = 1} : tensor<2x4xf32> -> tensor<2xf32>Optimization Passes
- Operator Fusion: Combine sequential ops to reduce memory traffic
- Layout Optimization: Select optimal memory layouts (row-major, column-major)
- Tiling: Break large operations into cache-friendly tiles
- Vectorization: Use SIMD instructions where available
- Buffer Placement: Optimize memory allocation and reuse
GPU Lowering Path
For GPU targets, additional dialects are used:
mind dialect
↓
linalg on tensors
↓
linalg on buffers
↓
gpu dialect (kernel outline)
↓
nvvm dialect (NVIDIA) or spirv dialect (Vulkan/OpenCL)
↓
PTX / SPIR-VExample Transformation
Before fusion:
%0 = mind.relu %input : tensor<1024xf32> %1 = mind.mul %0, %scale : tensor<1024xf32> %2 = mind.add %1, %bias : tensor<1024xf32>
After fusion (conceptual example — actual fused operations may vary):
// Hypothetical fused operation for illustration %0 = mind.fused_relu_scale_bias %input, %scale, %bias : tensor<1024xf32> // Single memory pass instead of three
Inspecting IR
Use compiler flags to inspect intermediate representations:
# Dump MIND dialect mindc --emit=mind-dialect model.mind # Dump linalg dialect mindc --emit=linalg model.mind # Dump LLVM IR mindc --emit=llvm model.mind # Dump assembly mindc --emit=asm model.mind
Learn More
See the full MLIR lowering specification at mind-spec/mlir-lowering.md.